

### Hall Ticket No: MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

II B.Tech I Semester (MR20-2020-21 Batch) Mid Term Examinations-I, December-2021Branch: CSETime: 90 MinsDate:

Answer ALL the Questions

#### **MODULE-I**

| S<br>No | Questions                                                           | Marks | Blooms<br>Taxonomy Level | co |
|---------|---------------------------------------------------------------------|-------|--------------------------|----|
| 1       | What is a System call? Explain different types of system calls.     | 5     | L2                       | 1  |
| 2       | <b>Illustrate</b> the structure of operating system                 | 5     | L3                       | 1  |
| 3       | <b>Discover</b> the objectives and services of the operating system | 5     | L3                       | 1  |
| 4       | <b>Describe</b> about Cache memory?                                 | 5     | L2                       | 1  |
| 5       | Classify Operating system Generations?                              | 5     | L2                       | 1  |
| 6       | <b>Describe</b> Direct Memory Access?                               | 5     | L2                       | 1  |
| 7       | Discuss about Basic Elements of computer System?                    | 5     | L2                       | 1  |
| 8       | Demonstrate Memory hierarchy?                                       | 5     | L2                       | 1  |

#### **MODULE-II**

| S<br>No |          | Quest                 | ions                      | Mark | s Blooms<br>Taxonomy<br>Level | со |
|---------|----------|-----------------------|---------------------------|------|-------------------------------|----|
| 1       | Consid   | er the following proc | cesses. Apply Round       | 5    | L3                            | 2  |
|         | Robin s  | scheduling is used wi | ith a time quantum of 2.  |      |                               |    |
|         | Calcula  | te the average waitir | ng time                   |      |                               |    |
|         |          | Process Name          | Burst Time                |      |                               |    |
|         |          | P1                    | 10                        |      |                               |    |
|         |          | P2                    | 1                         |      |                               |    |
|         |          | P3                    | 2                         |      |                               |    |
|         |          | P4                    | 5                         |      |                               |    |
|         |          | P5                    | 10                        |      |                               |    |
| 2       | What is  | critical section? Ap  | ply hardware solution for | or 5 | L3                            | 2  |
|         | critical | section problem.      |                           |      |                               |    |
| 3       | Explain  | a)CPU scheduling      | criteria b)Threads        | 5    | L2                            | 2  |

| 4 | Illustrat | te Petersons solution   | n and semaphores provide   | 5          | L2 | 2 |
|---|-----------|-------------------------|----------------------------|------------|----|---|
|   | a soluti  | on for critical section | n problem                  |            |    |   |
|   |           |                         |                            |            |    |   |
| 5 | What a    | re different schedule   | rs in Operating system     | 5          | L3 | 2 |
|   | Analyz    | e preemptive SJF w      | orks for the given data    |            |    |   |
|   |           | Process Name            | Burst Time                 |            |    |   |
|   |           | P1                      | 10                         |            |    |   |
|   |           | P2                      | 1                          |            |    |   |
|   |           | P3                      | 2                          |            |    |   |
|   |           | P4                      | 5                          |            |    |   |
| 6 | Define    | a process. Explain t    | he life cycle of a process | 5          | L2 | 2 |
|   | with a r  | neat sketch             |                            |            |    |   |
| 7 | What is   | a deadlock? Explai      | n necessary conditions for | r <b>5</b> | L2 | 2 |
|   | deadloc   | k?                      |                            |            |    |   |
|   |           |                         |                            |            |    |   |
| 8 | Explain   | n Banker's algorithm    | n for deadlock avoidance   | 5          | L3 | 2 |
|   | with an   | example?                |                            |            |    |   |
|   |           | -                       |                            |            |    |   |

### **MODULE - III**

| S<br>No | Questions                                        | Marks | Blooms<br>Taxonomy | со |
|---------|--------------------------------------------------|-------|--------------------|----|
|         |                                                  |       | Level              |    |
| 1       | Describe paging Concept?                         | 5     | L2                 | 3  |
| 2       | Illustrate Internal and External Fragmentations. | 5     | L3                 | 3  |
| 3       | Describe Segmentation in detail?                 | 5     | L2                 | 3  |
| 4       | Explain Contiguous memory?                       | 5     | L2                 | 3  |

Prepared By Name:

HOD Signature

Signature:

# Hall Ticket No:

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

II B.Tech I Semester (MR20-2020-21 Batch) Mid Term Examinations-I, December-2021

Subject Code & Name: A0511- **Operating System** 

Max. Marks: 25M

Branch: CSE

Time: 90 Mins

Date:

#### **Answer ALL the Questions:**

| S.<br>NO. | Questions                                                                | Ans |
|-----------|--------------------------------------------------------------------------|-----|
|           | Module-1                                                                 |     |
| 1         | Which among the following acts as an interface between user and hardware |     |
|           | A. Software                                                              |     |
|           | B. operating System                                                      | В   |
|           | C. System call                                                           |     |
|           | D. None                                                                  |     |
| 2         | OS is what type of software                                              |     |
|           | A. Application software                                                  |     |
|           | B. Embedded software                                                     | C   |
|           | C. System software                                                       |     |
|           | D. Critical System software                                              |     |
| 3         | Which acts as a resource manager in a computer                           |     |
|           | A. OS                                                                    |     |
|           | B. Hardware                                                              | A   |
|           | C. Control Unit                                                          |     |
| 4         | D. ALU                                                                   |     |
| 4         | A DAM                                                                    |     |
|           | A. KAM<br>P. DOM                                                         | D   |
|           | D. KOW<br>C. Sacondary Momory                                            | D   |
|           | D. Cache Memory                                                          |     |
| 5         | In which system every node has its own resources                         |     |
| 5         | A Parallel Systems                                                       |     |
|           | B Distributed Systems                                                    | В   |
|           | C. Cluster Systems                                                       | D   |
|           | D. ALL                                                                   |     |
| 6         | Which is not an OS                                                       |     |
|           | A. Linux                                                                 |     |
|           | B. Windows                                                               | С   |
|           | C. Oracle                                                                |     |
|           | D. DOS                                                                   |     |
| 7         | Which is the heart of OS                                                 |     |
|           | A. System call                                                           | р   |
|           | B. Kernel                                                                | D   |
|           | C. Scheduler                                                             |     |
|           | D. Dispatcher                                                            |     |
| 8         | Which program first runs when a computer is powered on                   |     |
|           | A. OS                                                                    |     |
|           | B. RAM                                                                   | D   |
|           | C. System Call                                                           |     |
|           | D. Bootstrap                                                             |     |
| 9         | Bootstrap is an example of                                               | ~   |
|           | A. Software C.Hardware                                                   | C   |
|           | B. Middleware D. Firmware                                                |     |
|           |                                                                          |     |



| 10 | A software generated interrupt is called as                                     |   |
|----|---------------------------------------------------------------------------------|---|
|    | A. Trap                                                                         |   |
|    | B. Error                                                                        | А |
|    | C. Bug                                                                          |   |
|    | D. None                                                                         |   |
| 11 | Advantage of multiprocessor systems is                                          |   |
|    | A. Increased throughput                                                         |   |
|    | B Increased Reliability                                                         | С |
|    | C Both                                                                          | C |
|    | D None                                                                          |   |
| 12 | Example of Uniprogramming OS is                                                 |   |
| 12 | A Linux                                                                         |   |
|    | A. Linux<br>D. Windows                                                          | C |
|    | D. WIIIdows                                                                     | C |
|    |                                                                                 |   |
| 10 | D. Unix                                                                         |   |
| 13 | Fastest means of access of memory is provided by                                | А |
|    | A. Registers                                                                    |   |
|    | B. RAM                                                                          |   |
|    | C. Cache memory                                                                 |   |
|    | D. ROM                                                                          |   |
| 14 | In which multiprocessing each processor performs all tasks within the OS        | В |
|    | A. Asymmetric Multiprocessing                                                   |   |
|    | B. Symmetric Multiprocessing                                                    |   |
|    | C. Both                                                                         |   |
|    | D. None                                                                         |   |
| 15 | Ability of main memory to accommodate more than one process at a time refers to | D |
| 10 | A Uniprogramming                                                                | 2 |
|    | B Multiprocessing                                                               |   |
|    | C. Uniprocessing                                                                |   |
|    | D. Multiprogramming                                                             |   |
| 16 | L. Multiplogramming                                                             | D |
| 10 | A Sector we have                                                                | D |
|    | A. System mode                                                                  |   |
|    | B. Supervisor mode                                                              |   |
|    | C. Privileged mode                                                              |   |
|    | D. All of the above                                                             |   |
| 17 | If mode bit is zero it represents which mode                                    | В |
|    | A. User mode                                                                    |   |
|    | B. Kernel mode                                                                  |   |
|    | C. Interrupt mode                                                               |   |
|    | D. OS mode                                                                      |   |
| 18 | If mode bit is one it represents which mode                                     | А |
|    | A. User mode C. Kernel mode                                                     |   |
|    | B. Interrupt modeD. OS mode                                                     |   |
|    | L                                                                               |   |
| 19 | In which type of computing every node can either be a server or client.         | В |
|    | A Distributed Computing                                                         |   |
|    | B Peer-Peer Computing                                                           |   |
|    | C Cluster Computing                                                             |   |
|    | D. Grid Computing                                                               |   |
| 20 | D. One Computing                                                                | D |
| 20 | which type of US is used in Embedded Systems                                    | D |
|    | A. Network US B. Distributed US                                                 |   |
|    | C. Time Sharing OS D. Real Time OS                                              |   |
|    |                                                                                 |   |

| 21 | CPU utilization is maximized by which OS                         | D |
|----|------------------------------------------------------------------|---|
|    | A. Serial Processing                                             |   |
|    | B. Network OS                                                    |   |
|    | C. Time Sharing                                                  |   |
|    | D. Batch OS                                                      |   |
| 22 | Response time is less in which OS                                | С |
|    | A. Serial Processing                                             |   |
|    | B. Network OS                                                    |   |
|    | C. Time Sharing                                                  |   |
|    | D. Batch OS                                                      |   |
| 23 | Which among the following is not a service of OS                 | C |
|    | A. Program Execution                                             |   |
|    | B. File System Management                                        |   |
|    | C. Hardware Correction                                           |   |
|    | D. Security                                                      |   |
| 24 | In which interface user has to enter commands into a file        | А |
|    | A. Batch Interface                                               |   |
|    | B. CLI                                                           |   |
|    | C. GUI                                                           |   |
|    | D. None of the above                                             |   |
| 25 | CLI stands for                                                   | D |
|    | A. Command Line Interpreter                                      |   |
|    | B. Computer Line Interface                                       |   |
|    | C. Computer Line Interpreter                                     |   |
|    | D. Command Line Interface                                        |   |
| 26 | Which provides an interface to the services made available by OS | В |
|    | A. System Programs                                               |   |
|    | B. System Calls                                                  |   |
|    | C. System Software                                               |   |
|    | D. Application Software                                          |   |
| 27 | In which mode system calls are executed                          | А |
|    | A. System mode                                                   |   |
|    | B. User mode                                                     |   |
|    | C. Hardware mode                                                 |   |
|    | D. Software mode                                                 |   |
| 28 | Fork is an example of which type of system call                  | В |
| -0 | A File management C Device Management                            | 2 |
|    | B Process Management D IO management                             |   |
|    | D. 1100055 Management D.10 management                            |   |
|    |                                                                  |   |
| 29 | Which system call is used to create a new process                | С |
|    | A Create                                                         | C |
|    | B New                                                            |   |
|    | C Fork                                                           |   |
|    | D Born                                                           |   |
| 30 | Compiler is an example of                                        | Δ |
| 50 | A System Program B System Call                                   | Λ |
|    | C Scheduler D Dispataber                                         |   |
|    | C. Senedulei D.Dispatenci                                        |   |
| 31 | Which is an example of simple structure of OS                    | R |
| 51 | A Linux B DOS                                                    | D |
|    | C Unix D Windows                                                 |   |
|    |                                                                  |   |
| 1  |                                                                  | 1 |

| 32  | In layered architecture lowest level represents what                                   | C |
|-----|----------------------------------------------------------------------------------------|---|
|     | A. User Interface                                                                      |   |
|     | B. Interrupt                                                                           |   |
|     | C. Hardware                                                                            |   |
|     | D. IO management                                                                       |   |
| 33  | In layered architecture top level represents what                                      | A |
|     | A. User Interface                                                                      |   |
|     | B. Interrupt                                                                           |   |
|     | C. Hardware                                                                            |   |
|     | D. IO management                                                                       |   |
| 34  | Which among the following allows to run multiple virtual machines on a single hardware | C |
|     | A. OS                                                                                  |   |
|     | B. JVM                                                                                 |   |
|     | C. Virtual Machine Manager                                                             |   |
|     | D. None of the above                                                                   |   |
| 35  | A program under execution is called as                                                 | В |
|     | A. File                                                                                |   |
|     | B. Process                                                                             |   |
|     | C. Object                                                                              |   |
|     | D. Class                                                                               |   |
| 36  | Unit of work in a computer is sometimes referred as                                    | С |
|     | A. File                                                                                | _ |
|     | B. Program                                                                             |   |
|     | C. Process                                                                             |   |
|     | D. Object                                                                              |   |
| 37  | In which section of process executable code is stored                                  | В |
|     | A. Data                                                                                |   |
|     | B. Text                                                                                |   |
|     | C. Heap                                                                                |   |
|     | D Stack                                                                                |   |
| 38  | Which among the following is not a part of process                                     | D |
| 20  | A Data                                                                                 | 2 |
|     | B Text                                                                                 |   |
|     | C Hean                                                                                 |   |
|     | D Queue                                                                                |   |
| 39  | To access the services of the operating system, the interface is provided by the       | B |
| 57  | A Library                                                                              | Б |
|     | B System calls                                                                         |   |
|     | C Assembly instructions                                                                |   |
|     | $D \Delta PI$                                                                          |   |
| 40  | CPU scheduling is the basis of                                                         | B |
| -10 | A Library                                                                              | Б |
|     | B System calls                                                                         |   |
|     | C. Assembly instructions                                                               |   |
|     | D API                                                                                  |   |
| 41  | D. All<br>Which one of the following is not true?                                      | В |
| 41  | $\Delta$ kernel remains in the memory during the entire computer session               | D |
|     | B kernel is made of various modules which can not be loaded in running os              |   |
|     | C kernel is the first part of the operating system to load into memory during besting  |   |
|     | D d) kernel is the program that constitutes the central core of the operating system   |   |
|     | D. a) Kerner is the program that constitutes the central core of the operating system  |   |

Т

| 42   | If a process fails, most operating system write the error information to a  | С |
|------|-----------------------------------------------------------------------------|---|
|      | a) new file b) another running process c) log file d) none of the mentioned |   |
|      |                                                                             |   |
|      |                                                                             |   |
| - 10 |                                                                             |   |
| 43   | Which one of the following is not a real time operating system?             | В |
|      | A. RTLinux                                                                  |   |
|      | B. Palm OS                                                                  |   |
|      | C. QNX                                                                      |   |
|      | D. VxWorks                                                                  |   |
| 44   | What does OS X has?                                                         | D |
|      | A. monolithic kernel with modules                                           |   |
|      | B. microkernel                                                              |   |
|      | C monolithic kernel                                                         |   |
|      | D hybrid karnal                                                             |   |
| 15   | D. Hydrid Kerner                                                            | D |
| 45   | In operating system, each process has its own                               | D |
|      | A. open files                                                               |   |
|      | B. pending alarms, signals, and signal handlers                             |   |
|      | C. address space and global variables                                       |   |
|      | D. all of the mentioned                                                     |   |
| 46   | In operating system, each process has its own                               | С |
|      | A.open files B.pending alarms, signals, and signal handlers                 |   |
|      | C.address space and global variables D. all of the mentioned                |   |
| 47   | Which of the following is not an operating system?                          | С |
| 17   | A Windows                                                                   | C |
|      | A. Windows<br>D. Linux                                                      |   |
|      | D. LIIIUX                                                                   |   |
|      | C. Oracle                                                                   |   |
| - 10 | D. DOS                                                                      | ~ |
| 48   | When was the first operating system developed?                              | C |
|      | A. 1948                                                                     |   |
|      | B. 1949                                                                     |   |
|      | C. 1950                                                                     |   |
|      | D. 1951                                                                     |   |
| 49   | Which of the following is the extension of Notepad?                         | А |
|      |                                                                             |   |
|      | A tyt                                                                       |   |
|      | B vls                                                                       |   |
|      | C ppt                                                                       |   |
|      | D hmn                                                                       |   |
| 50   |                                                                             |   |
| 50   | What is the full name of FAT?                                               | В |
|      |                                                                             |   |
|      | A. File attribute table                                                     |   |
|      | B. File allocation table                                                    |   |
|      | C. Font attribute table                                                     |   |
|      | D. Format allocation table                                                  |   |
|      |                                                                             |   |
|      |                                                                             |   |
|      |                                                                             |   |
|      |                                                                             |   |
|      |                                                                             |   |
|      |                                                                             |   |
|      |                                                                             |   |
|      |                                                                             |   |
|      |                                                                             |   |
|      |                                                                             |   |

|    | Module-2                                                                                                                                                                                         |   |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|
| 51 | The scheduler which brings a program from secondary storage to main memory is<br>A. Long Term Scheduler<br>B. Short Term Scheduler<br>C. Medium Term Scheduler<br>D. Dispatcher                  | A |  |  |
| 52 | The scheduler which decides that a process has to be scheduled for execution is<br>A. Long Term Scheduler<br>B. Short Term Scheduler<br>C. Medium Term Scheduler<br>D. Dispatcher                | В |  |  |
| 53 | The scheduler which decides to remove a process from main memory is<br>A. Long Term Scheduler<br>B. Short Term Scheduler<br>C. Medium Term Scheduler<br>D. Dispatcher                            | С |  |  |
| 54 | A process when created is said to be in which state<br>A. Ready<br>B. New<br>C. Running<br>D. Terminated                                                                                         | В |  |  |
| 55 | Process waiting for some event represents which state<br>A. Ready<br>B. New<br>C. Running<br>D. Waiting                                                                                          | D |  |  |
| 56 | PCB stands for<br>A. Process Control Band<br>B. Process Control Block<br>C. Program Control Block<br>D. Process Central Block                                                                    | В |  |  |
| 57 | Which is not a attribute of PCB<br>A. PC<br>B. Process Priority<br>C. General Purpose Registers<br>D. IR                                                                                         | D |  |  |
| 58 | <ul> <li>Number of processes in main memory refers to</li> <li>A. Degree of Multiprogramming</li> <li>B. Degree of Main Memory</li> <li>C. Degree of CPU</li> <li>D. Degree of System</li> </ul> | A |  |  |
| 59 | Cooperating processes communicate through<br>A. Intra Process Communication<br>B. Inter Process Communication<br>C. Inter Thread Communication<br>D. Process Synchronization                     | В |  |  |

| A.Independent Process B. Dependent Process C. Both D. None                                     |
|------------------------------------------------------------------------------------------------|
|                                                                                                |
|                                                                                                |
|                                                                                                |
| 61 Which type of buffer potentially stores messages of infinite length C                       |
| A. Zero size buffer                                                                            |
| B. Bounded Buffer                                                                              |
| C. Unbounded Buffer                                                                            |
| D. Trivial Buffer                                                                              |
| 62 Under which scheduling once the CPU has been allocated to a process, the process keep the A |
| CPLI until it releases it                                                                      |
| A Non preemptive                                                                               |
| B preemptive                                                                                   |
| D. preemptive                                                                                  |
| C. Selective<br>D. None of the showe                                                           |
| D. Note of the above                                                                           |
| 65 which component gives control of the cpu to the process selected                            |
| A. Scheduler                                                                                   |
| B. Kernel                                                                                      |
| C. Dispatcher                                                                                  |
| D. Memory manager                                                                              |
| 64 Time taken by the dispatcher to stop one process and start another is called as D           |
| A. Throughput B. Waiting time                                                                  |
| C.Turn around time D. Dispatch latency                                                         |
|                                                                                                |
| 65 Which among the following is not a scheduling criteria B                                    |
| A. Throughput                                                                                  |
| B. Deadlock                                                                                    |
| C. Waiting time                                                                                |
| D. Turnaround time                                                                             |
| 66No of processes completed in unit time refers toC                                            |
| A. Latency                                                                                     |
| B. Delay                                                                                       |
| C. Throughput                                                                                  |
| D. Efficiency                                                                                  |
| 67       Total time spent by the process in the system is       A                              |
| A. Turnaround time                                                                             |
| B. Burst time                                                                                  |
| C. Waiting time                                                                                |
| D. Response time                                                                               |
| 68Time required by the process for its execution on CPUB                                       |
| A. Turnaround time                                                                             |
| B. Burst time                                                                                  |
| C. Waiting time                                                                                |
| D. Response time                                                                               |
| 69Time from submission of request to the first response generatedD                             |
| A.Turnaround time                                                                              |
| B. Burst time                                                                                  |
| C. Waiting time                                                                                |
| D. Response time                                                                               |

| 70  | The chart used for analyzing CPU scheduling algorithm                                        | D |
|-----|----------------------------------------------------------------------------------------------|---|
|     | A. Bar chart B.Pie chart                                                                     |   |
|     | C. Flow chart D. Gantt chart                                                                 |   |
|     |                                                                                              |   |
|     |                                                                                              |   |
|     |                                                                                              |   |
| 71  | Which algorithm selects a process with lowest burst time                                     | В |
| . – | A. FCFS                                                                                      |   |
|     | B. SJF                                                                                       |   |
|     | C. Priority                                                                                  |   |
|     | D. Round robin                                                                               |   |
| 72  | Which algorithm selects a process with highest priority                                      | С |
|     | A. FCFS                                                                                      |   |
|     | B. SJF                                                                                       |   |
|     | C. Priority                                                                                  |   |
|     | D. Round robin                                                                               |   |
| 73  | Which algorithm doesn't face the problem of starvation                                       | D |
|     | A. FCFS                                                                                      |   |
|     | B. SJF                                                                                       |   |
|     | C. Priority                                                                                  |   |
|     | D. Round robin                                                                               |   |
| 74  | Smallest unit of process is                                                                  | В |
|     | A. Program                                                                                   |   |
|     | B. Thread                                                                                    |   |
|     | C. Object                                                                                    |   |
|     | D. Job                                                                                       |   |
| 75  | In which model every user thread has a corresponding kernel thread                           | C |
|     | A. Many to one                                                                               |   |
|     | B. One to many                                                                               |   |
|     | C. One to one                                                                                |   |
|     | D. Many to many                                                                              |   |
| /6  | A deadlock avoidance algorithm dynamically examines the, to ensure that a                    | A |
|     | circular wait condition can never exist.                                                     |   |
|     | A. resource anocation state                                                                  |   |
|     | B. system storage state                                                                      |   |
|     | C. operating system                                                                          |   |
| 77  | D. resources                                                                                 | P |
| //  | A state is safe, if                                                                          | Б |
|     | B the system can allocate resources to each process in some order and still avoid a          |   |
|     | b. the system can anotate resources to each process in some order and still avoid a deadlock |   |
|     | C the state keeps the system protected and safe                                              |   |
|     | D All of these                                                                               |   |
| 78  | If no cycle exists in the resource allocation graph                                          | В |
| 10  | A then the system will not be in a safe state                                                | D |
|     | B. then the system will be in a safe state                                                   |   |
|     | C. either (a) or (b)                                                                         |   |
|     | D. None of these                                                                             |   |
| 79  | The wait-for graph is a deadlock detection algorithm that is applicable when                 | А |
|     | A. all resources have a single instance                                                      | _ |
|     | B. all resources have multiple instances                                                     |   |
|     | C. both a and b                                                                              |   |
|     | D. None                                                                                      |   |

| 80 | An edge from process Pi to Pj in a wait for graph indicates that                          | D |
|----|-------------------------------------------------------------------------------------------|---|
|    | A. Pj is waiting for Pi to release a resource that Pj needs                               |   |
|    | B. Pi is waiting for Pj to leave the system                                               |   |
|    | C. Pj is waiting for Pi to leave the system                                               |   |
|    | D. Pi is waiting for Pj to release a resource that Pi needs                               |   |
| 81 | The disadvantage of invoking the detection algorithm for every request is                 | С |
|    | A. overhead of the detection algorithm due to consumption of memory                       |   |
|    | B. excessive time consumed in the request to be allocated memory                          |   |
|    | C. considerable overhead in computation time                                              |   |
|    | D. All of these                                                                           |   |
| 82 | A computer system has 6 tape drives, with 'n' processes competing for them. Each process  | А |
|    | may need 3 tape drives. The maximum value of 'n' for which the system is guaranteed to be |   |
|    | deadlock free is                                                                          |   |
|    | A. 2                                                                                      |   |
|    | B. 3                                                                                      |   |
|    | C. 4                                                                                      |   |
| 02 |                                                                                           | 0 |
| 83 | A system has 3 processes sharing 4 resources. If each process needs a maximum of 2 units  | C |
|    | then, deadlock                                                                            |   |
|    | A. has to occur                                                                           |   |
|    | B. Illay occur                                                                            |   |
|    | D. None of these                                                                          |   |
| 8/ | D. None of these                                                                          | ٨ |
| 04 | $\Delta$ abort one or more processes to break the circular wait                           | Λ |
|    | B abort all the process in the system                                                     |   |
|    | C preempt all resources from all processes                                                |   |
|    | D to preempt some resources from one or more of the deadlocked processes                  |   |
| 85 | Those processes should be aborted on occurrence of a deadlock, the termination of which   | B |
| 05 | A. is more time consuming                                                                 | D |
|    | B. incurs minimum cost                                                                    |   |
|    | C. safety is not hampered                                                                 |   |
|    | D. All of these                                                                           |   |
| 86 | If we preempt a resource from a process, the process cannot continue with its normal      | В |
|    | execution and it must be                                                                  |   |
|    | A. aborted                                                                                |   |
|    | B rolled back                                                                             |   |
|    | C. terminated                                                                             |   |
|    | D. queued                                                                                 |   |
| 87 | If the resources are always preempted from the same process, can occur                    | D |
|    | A. deadlock                                                                               |   |
|    | B. system crash                                                                           |   |
|    | C. aging                                                                                  |   |
|    | D. starvation                                                                             |   |
| 88 | The solution to starvation is                                                             | А |
|    | A. the number of rollbacks must be included in the cost factor                            |   |
|    | B. the number of resources must be included in resource preemptionresource                |   |
|    | C. preemption be done instead                                                             |   |
| 00 | D. All of these                                                                           | A |
| 89 | m processes share n resources of the same type. The maximum need of each process doesn't  | А |
|    | exceed in and the sum of all their maximum needs is always less than m+n. In this setup,  |   |
|    |                                                                                           |   |
|    | A. Call lievel occur<br>B. may occur                                                      |   |
|    | D. may occur                                                                              |   |

|     | C. has to occur                                                                                                |    |
|-----|----------------------------------------------------------------------------------------------------------------|----|
|     | D. None of these                                                                                               |    |
| 90  | A deadlock eventually cripples system throughput and will cause the CPU utilization to                         | В  |
|     |                                                                                                                |    |
|     |                                                                                                                |    |
|     | A. increase                                                                                                    |    |
|     | B. drop                                                                                                        |    |
|     | C. stay still<br>D. Name of these                                                                              |    |
| 01  | D. None of these                                                                                               | •  |
| 91  | A defining a linear ordering of recourse types                                                                 | A  |
|     | A. defining a linear ordering of resource types                                                                |    |
|     | B. using unead                                                                                                 |    |
|     | C. using pipes                                                                                                 |    |
| 02  | D. all of the following is the deadlock avoidance algorithm?                                                   | D  |
| 92  | A henker's algorithm                                                                                           | В  |
|     | A. banker's algorithm                                                                                          |    |
|     | B. round-robin algorithm                                                                                       |    |
|     | C. elevator algorithm                                                                                          |    |
| 02  | D. Kam S algorithm                                                                                             | D  |
| 95  | A in advance processes receive that have much recourse they will need                                          | D  |
|     | A. In advance processes rarely know that now much resource they will need                                      |    |
|     | B. the number of processes changes as time progresses                                                          |    |
|     | C. resource once available can disappear                                                                       |    |
| 0.4 | D. all of the mentioned                                                                                        | D  |
| 94  | A problem encountered in multitasking when a process is perpetually denied necessary                           | В  |
|     |                                                                                                                |    |
|     | A. deadlock                                                                                                    |    |
|     | B. starvation                                                                                                  |    |
|     | C. Inversion                                                                                                   |    |
| 05  | D. aging                                                                                                       | ٨  |
| 95  | A there must be a fixed number of resources to allocate                                                        | A  |
|     | A. there must be a fixed number of resources to anotate<br><b>B</b> resource allocation must be done only once |    |
|     | <b>B.</b> resource anotation must be done only once<br>C all deadlooked processes must be shorted              |    |
|     | C. all deadlocked processes must be aborted                                                                    |    |
| 06  | D. Inversion technique can be used                                                                             | С  |
| 90  | A Allocation Available                                                                                         | C  |
|     | A. Anotation – Available                                                                                       |    |
|     | C. Max Allocation                                                                                              |    |
|     | D. Allocation Max                                                                                              |    |
| 07  | The request and release of resources are                                                                       | C  |
| 51  | A command line statements                                                                                      | C  |
|     | B interrupts                                                                                                   |    |
|     | C system calls                                                                                                 |    |
|     | D special programs                                                                                             |    |
| 98  | For Mutual exclusion to prevail in the system                                                                  | Δ  |
| 70  | A at least one resource must be held in a non sharable mode                                                    | 11 |
|     | B the processor must be a uniprocessor rather than a multiprocessor                                            |    |
|     | C there must be at least one resource in a sharable mode                                                       |    |
|     | D All of these                                                                                                 |    |
| 99  | Deadlock prevention is a set of methods                                                                        | Δ  |
|     | A to ensure that at least one of the necessary conditions cannot hold                                          | Π  |
|     | B to ensure that all of the necessary conditions do not hold                                                   |    |
|     | C to decide if the requested resources for a process have to be given or not                                   |    |
| Î   |                                                                                                                | 1  |

|      | D. to recover from a deadlock                                                                  |    |
|------|------------------------------------------------------------------------------------------------|----|
| 100  | The disadvantage of a process being allocated all its resources before beginning its execution | В  |
|      | is                                                                                             |    |
|      | A. Low CPU utilization                                                                         |    |
|      | B. Low resource utilization                                                                    |    |
|      | C. Very high resource utilization                                                              |    |
|      | D. None of these                                                                               |    |
|      | Module -3                                                                                      | 1  |
| 101  | MFT stands for                                                                                 | В  |
| 101  | Multiprocessing with fixed number of tasks                                                     |    |
|      | Multiprogramming with fixed number of tasks                                                    |    |
|      | Multiuser with fixed number of tasks                                                           |    |
|      | Multiuser with frequent number of tasks                                                        |    |
| 102  | Dynamic linking uses                                                                           | Δ  |
| 102  | Stube                                                                                          | 11 |
|      | Files                                                                                          |    |
|      | Objects                                                                                        |    |
|      | None                                                                                           |    |
| 102  | MET on d MVT one wood in                                                                       | C  |
| 105  | A Non Contiguous Memory Allocation                                                             | C  |
|      | A. Non Configuous Memory Anocation<br>D. Vietual Mamary                                        |    |
|      | D. Vitual Memory Allocation                                                                    |    |
|      | D. Desing                                                                                      |    |
| 104  | D. Paging                                                                                      | D  |
| 104  | In Load time binding compiler generates code                                                   | D  |
|      | A. Relative code                                                                               |    |
|      | B. Absolute code                                                                               |    |
|      | C. Machine code                                                                                |    |
| 105  |                                                                                                | D  |
| 105  | Which of the following algorithms are used for contiguous memory allocation                    | D  |
|      | A. Best Fit                                                                                    |    |
|      | B. First Fit                                                                                   |    |
|      | C. Worst Fit                                                                                   |    |
| 10.6 |                                                                                                |    |
| 106  | Wastage of memory after allocation of process in a block is called as                          | В  |
|      | A. External Fragmentation b. Internal Fragmentation                                            |    |
|      | B. Compaction D.Paging                                                                         |    |
| 107  | is the solution for External Fragmentation                                                     | C  |
|      | a. Linking b. Loading c. Compaction d. Compiling                                               |    |
| 108  | Which of the following is example of non contiguous allocation                                 | C  |
|      | a.Paging b.Segmentation C. MFT D. MVT                                                          |    |
| 109  | In paging technique is the data structure used to calculate physical address                   | В  |
|      |                                                                                                |    |
|      | A.Symbol table B. Page Table C.Segment Table D.Inode Table                                     |    |
| 110  | Page table address is stored in which register                                                 | D  |
|      | A.MTBR B. BSA C. PC D. PTBR                                                                    |    |
| 111  | In paging all processes will have single page table                                            | В  |
|      | A.Hashed paging B.Inverted Paging C.Multilevel Paging D.None                                   |    |
| 112  | Logical Address consists of page number and                                                    | С  |
|      | A.Frame Number B.Page Table Number C. Offset D.Block number                                    |    |
| 113  | Physical Address consists of and offset                                                        | A  |
|      | A.Frame Number B.Page Table Number C.Offset D. Block number                                    |    |
| 114  | Paging also suffers from                                                                       | В  |
|      | A.External fragmentation B.Internal Fragmentation C.Compaction                                 |    |
|      | D. None                                                                                        |    |

| 115 | allows to store data greater than the size of main memory                                   | D |
|-----|---------------------------------------------------------------------------------------------|---|
|     | A.Paging B.Segmentation C.MFT D.Virtual Memory                                              |   |
| 116 | is the technique to implement Virtual Memory                                                |   |
|     | A.MFT B.MVT C. Demand Paging D.Segmentation                                                 |   |
| 117 | When ever requested page is not available in memory has to be performed                     | С |
|     |                                                                                             |   |
|     | A.Paging B.Demand Paging C.Page Replacement D,None                                          |   |
| 118 | In which algorithm first arrived page will be selected for replacement                      | A |
|     | A.FIFO B.LRU c.MFU D. Optimal                                                               | _ |
| 119 | In which algorithm page which will not be referred in future for long time will be replaced | D |
|     |                                                                                             |   |
| 100 | A.FIFO B. LRU C. MFU D.Optimal                                                              | 0 |
| 120 | Increase in number of frames will increase number of page faults refers to                  | C |
|     | A. Demand Paging B. Virtual memory C.Belady's Anomaly                                       |   |
| 121 | D.Segment faut<br>Which algorithm/a face Delady'a Anomaly                                   | D |
| 121 |                                                                                             | D |
|     | A. LKO<br>B. FIFO                                                                           |   |
|     | C MFU                                                                                       |   |
|     | D MRU                                                                                       |   |
| 122 | is the example of counting algorithm                                                        | D |
| 122 | A.LRU B. FIFO C. Optimal D.MFU                                                              | D |
| 123 | A process is said to if it is spending most of the time in doing a paging                   | С |
|     | A.Fragmentation B.Segmentation C.Thrashing D.Replicating                                    |   |
| 124 | In a disk every track is a collection of                                                    | В |
|     | A. Cylinders                                                                                |   |
|     | B. Sectors                                                                                  |   |
|     | C. Spindle                                                                                  |   |
|     | D. Stack                                                                                    |   |
| 125 | COW stands for                                                                              | B |
|     | A. Compress of write memory                                                                 |   |
|     | B. Copy overwrite                                                                           |   |
|     | C. Compress overwrites                                                                      |   |
|     | D. Computer of world                                                                        |   |

## Prepared By Name:

## **HOD Signature**

Signature: